Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A one-dimensional cadmium(II) complex supported by a sulfur-nitrogen mixeddonor ligand

Qian Gao, Chao-Yan Zhang, Yue Cui and Ya-Bo Xie*
College of Environmental and Energy Engineering, Beijing University of Technology,
Beijing 100022, People's Republic of China
Correspondence e-mail: xieyabo@bjut.edu.cn

Received 7 June 2009; accepted 20 June 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{N})=0.002 \AA$; R factor $=0.015 ; w R$ factor $=0.043$; data-to-parameter ratio $=17.6$.

In the title compound, catena-poly[cadmium(II)-bis($\mu-5-$ amino-1,3,4-thiadiazole-2-thiolato)- $\left.\kappa^{2} N^{3}: S^{2} ; \kappa^{2} S^{2}: N^{3}\right]$, [Cd$\left.\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{2}\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ ion is coordinated by two N atoms of the 1,3,4-thiadiazole rings from two ligands and two S atoms of sulfhydryl from two other ligands in a slightly distorted tetrahedral geometry. The ligands bridge $\mathrm{Cd}^{\mathrm{II}}$ ions, forming one-dimensional chains along [001], which are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into a three-dimensional network.

Related literature

For self-assembled coordination polymeric complexes with versatile structure features, see: Mulfort \& Hupp(2007); Liu et al. (2003); Bauer et al. (2007). For the effect of hydrogen bonding in stabilizing and regulating the supramolecular construction, see: Dalrymple \& Shimidzu (2007); Dong et al. (2006); Wang et al. (2005). For similar stuctures and bond lengths, see: Tzeng, Lee et al. (2004); Tzeng et al. (1999); Tzeng, Huang et al. (2004).

Experimental

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{2}\right]$	$V=1056.66(16) \AA^{3}$
$M_{r}=376.77$	$Z=4$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=12.6419(11) \AA$	$\mu=2.83 \mathrm{~mm}^{-1}$
$b=10.8341(10) \AA$	$T=293 \mathrm{~K}$
$c=7.7241(7) \AA$	$0.24 \times 0.24 \times 0.20 \mathrm{~mm}$
$\beta=92.795(1)^{\circ}$	

Data collection
Bruker SMART CCD area-detector 3155 measured reflections diffractometer 1232 independent reflections
Absorption correction: multi-scan 1198 reflections with $I>2 \sigma(I)$ (SADABS ; Bruker, 1998) $R_{\text {int }}=0.015$
$T_{\text {min }}=0.550, T_{\text {max }}=0.602$
(expected range $=0.519-0.568)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$	70 parameters
$w R\left(F^{2}\right)=0.043$	H -atom parameters constrained
$S=1.01$	$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}$
1232 reflections	$\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.25	$3.064(2)$	158
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 2^{\text {ii }}$	0.86	2.66	$3.119(2)$	114
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{~S} 1^{\text {iii }}$	0.86	2.74	$3.4694(17)$	144

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x,-y, z+\frac{1}{2}$; (iii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by Beijing Municipal Natural Science Foundation (No. 2082004), the Innovation project for

metal-organic compounds

Doctors of Beijing University of Technology (bcx-2009-048) and the Seventh Technology Fund for Postgraduates of Beijing University of Technology (ykj-2009-2374).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2170).

References

Bauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. \& Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 71367144.

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dalrymple, S. A. \& Shimizu, G. K. H. (2007). J. Am. Chem. Soc. 129, 12114 12116
Dong, Y.-B., Sun, T., Ma, J.-P., Zhao, X.-X. \& Huang, R.-Q. (2006). Inorg. Chem. 45, 10613-10628.
Liu, T.-F., Fu, D., Gao, S., Zhang, Y.-Z., Sun, H.-L., Su, G. \& Liu, Y.-J. (2003). J. Am. Chem. Soc. 125, 13976-13977.
Mulfort, K. L. \& Hupp, J. T. (2007). J. Am. Chem. Soc. 129, 9604-9605.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tzeng, B.-C., Huang, Y.-C., Wu, W.-M., Lee, S.-Y., Lee, G.-H. \& Peng, S.-M. (2004). Cryst. Growth Des. 4, 63-70.

Tzeng, B.-C., Lee, G.-H. \& Peng, S.-M. (2004). Inorg. Chem. Commun. 7, $151-$ 154.

Tzeng, B.-C., Schier, A. \& Schmidbaur, H. (1999). Inorg. Chem. 38, 39783984.

Wang, Y., Cao, R., Bi, W., Li, X., Li, X. \& Sun, D. (2005). J. Mol. Struct. 738, 5157.

supplementary materials

A one-dimensional cadmium(II) complex supported by a sulfur-nitrogen mixed-donor ligand

Q. Gao, C.-Y. Zhang, Y. Cui and Y.-B. Xie

Comment

Owing to their potential as new functional materials, interest in self-assembled coordination polymeric complexes with versatile structure features has grown rapidly (Mulfort et al., 2007; Liu et al., 2003; Bauer et al., 2007). Hydrogen bonding is one highly directional supramolecular force, and although weaker than coordinative bonds, have been recognized to play critical roles in stabilizing and regulating the supramolecular construction (Dalrymple et al., 2007). Crystal engineering studies of hydrogen bonding in low-dimensional materials, especially in one-dimensional transition metal complexes, have been reported by several groups (Dong et al., 2006; Wang et al., 2005). Tzeng and coworkers have reported 2-amino-5-mercapto-1,3,4-thiadiazolate (L), acting as an auxiliary ligand and displaying its active coordination properties with $\mathrm{Pd}(\mathrm{II})$ (Tzeng, Lee et al., 2004) and $\mathrm{Au}(\mathrm{I})$ (Tzeng et al., 1999; Tzeng, Huang et al., 2004) to form diverse crystal structures. The various hydrogen bonding interactions have also been investigated, and have shown important effects in forming large molecular arrays. However, in these compounds, the ligand had unidentate coordination to metal ions with the sulfur atom of sulfhydryl. Herein, we report the crystal structure of $\mathrm{Cd}{ }^{\text {II }}$ complex, $\left[\mathrm{Cd}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{2}\right]_{n} \text { (I), using 2-amino-5-mercapto- }}\right.$ 1,3,4-thiadiazolate (L) as the unique bridging ligand and exhibiting one-dimensional chain structure feature.

A perspective view of a tetranuclear fragment of the chain is shown in Fig. 1. There is one crystallographically independent $\mathrm{Cd}^{\mathrm{II}}$ ion coordinated to two nitrogen atoms which belong to the 1,3,4-thiadiazole rings from two ligands, with N1A—Cd1—N1B angle of $103.50(7)^{\circ}$, two sulfur atoms of sulfhydryl from two other ligands with S1—Cd1—S1A angle of $139.05(2)^{\circ}$, and displaying a slightly distorted tetrahedron geometry. The bond length of $\mathrm{Cd}-\mathrm{S}$ is 2.5264 (4) \AA, which is significantly longer than that of unidentate coordination to metal ions (Pd—S 2.2793 (9) \AA, Tzeng, Lee et al., 2004) (Au-S 2.295 (5)-2.323 (4) A, Tzeng et al., 1999; Tzeng, Huang et al., 2004). Nitrogen atoms participating in coordination may cause the $\mathrm{Cd}-\mathrm{S}$ bond to lengthen. Simultaneously, each ligand bridges two $\mathrm{Cd}^{\text {II }}$ ions to from a one-dimensional chain along the c axis.

There are two kinds of hydrogen bond in the complex. $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds exist between the hydrogen atom of the amidogen from one chain and the uncoordinated nitrogen atom of the 1,3,4-thiadiazole ring from the adjacent chain. This joins the chains along the c axis into a two-dimensional plane (Fig. 2). $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds occur between the other hydrogen atom of the same amidogen and the sulfur atom of the coordinated sulfhydryl from an adjacent chain. This joins the one-dimensional chains along the a axis to create a two-dimensional plane (Fig. 3). The parameters of hydrogen bonds are given in the Table 1.

Experimental

A mixture of 2-amino-5-mercapto-1,3,4-thiadiazole ($39.95 \mathrm{mg}, 0.3 \mathrm{mmol}$) (HL), LiOH. $\mathrm{H}_{2} \mathrm{O}(12.59 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(92.55 \mathrm{mg}, 0.3 \mathrm{mmol})$ was dissolved in $25 \mathrm{ml} \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. The resulting solution was filtered and the filtrate was allowed to stand for several days. Light yellow crystals were collected in about 30% yield (based on $\mathrm{Cd}^{\mathrm{II}}$).

supplementary materials

Refinement

H atoms of N were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.2 times those of the parent N atoms.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms. Symmetry related atoms have the following symmetry codes: $\mathrm{A}=x,-y+1, z+1 / 2 \mathrm{~B}=-x+1,-y+1,-z \mathrm{AA}=-x+1, y,-z+1 / 2$.

Fig. 2. The complexes are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds along the c axis.

Fig. 3. The complexes are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds along the a axis.
catena-poly[cadmium(II)-bis(μ-5-amino-1,3,4-thiadiazole-2-thiolato)- $\kappa^{2} N^{3}: S^{2} ; \kappa^{2} S^{2}: N^{3}$]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{~S}_{2}\right)_{2}\right]$
$M_{r}=376.77$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=12.6419$ (11) \AA
$b=10.8341(10) \AA$
$c=7.7241$ (7) \AA
$\beta=92.7950(10)^{\circ}$
$V=1056.66(16) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F_{000}=728 \\
& D_{\mathrm{x}}=2.368 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2746 \text { reflections } \\
& \theta=2.5-27.9^{\circ} \\
& \mu=2.83 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.24 \times 0.24 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube

1232 independent reflections
1198 reflections with $I>2 \sigma(I)$

Monochromator: graphite
$T=293 \mathrm{~K}$
φ and ω scans
Absorption correction: Multi-Scan
(SADABS ; Bruker, 1998)
$T_{\text {min }}=0.550, T_{\text {max }}=0.602$
3155 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.043$
$S=1.01$
1232 reflections
70 parameters
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& R_{\text {int }}=0.015 \\
& \theta_{\max }=27.9^{\circ} \\
& \theta_{\min }=2.5^{\circ} \\
& h=-11 \rightarrow 16 \\
& k=-14 \rightarrow 14 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0274 P)^{2}+0.7843 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.49$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0116 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cd1	0.5000	$0.582614(14)$	0.2500	$0.02585(9)$
C1	$0.62301(13)$	$0.34405(15)$	$0.0808(2)$	$0.0238(3)$
C2	$0.61171(13)$	$0.12413(16)$	$0.1243(2)$	$0.0267(3)$
N1	$0.56499(11)$	$0.28638(13)$	$-0.03734(18)$	$0.0262(3)$
N2	$0.55650(12)$	$0.16022(13)$	$-0.01418(19)$	$0.0289(3)$
N3	$0.61723(13)$	$0.00640(15)$	$0.1767(2)$	$0.0384(4)$
H3A	0.5834	-0.0499	0.1182	0.046^{*}
H3B	0.6546	-0.0129	0.2687	0.046^{*}
S1	$0.64750(3)$	$0.50104(4)$	$0.07269(5)$	$0.02700(11)$

0.03215 (12)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.03358(12)$	$0.02365(12)$	$0.02017(11)$	0.000	$-0.00030(7)$	0.000
C1	$0.0249(7)$	$0.0262(8)$	$0.0202(7)$	$0.0030(6)$	$-0.0006(5)$	$0.0004(6)$
C2	$0.0242(7)$	$0.0278(8)$	$0.0282(8)$	$0.0013(6)$	$0.0016(6)$	$0.0024(6)$
N1	$0.0326(7)$	$0.0236(7)$	$0.0219(6)$	$-0.0002(5)$	$-0.0033(5)$	$-0.0001(5)$
N2	$0.0349(7)$	$0.0234(7)$	$0.0281(7)$	$0.0002(6)$	$-0.0027(6)$	$0.0004(5)$
N3	$0.0346(8)$	$0.0297(8)$	$0.0500(10)$	$-0.0012(6)$	$-0.0079(7)$	$0.0144(7)$
S1	$0.0292(2)$	$0.0257(2)$	$0.0261(2)$	$-0.00241(15)$	$0.00115(15)$	$-0.00137(15)$
S2	$0.0341(2)$	$0.0325(2)$	$0.0287(2)$	$-0.00058(17)$	$-0.01070(17)$	$0.00401(16)$

Geometric parameters $\left(A,{ }^{\circ}\right)$

Cd1-N1 ${ }^{\text {i }}$	2.2927 (14)	C2-N2	1.308 (2)
Cd1-N1 $1^{\text {ii }}$	2.2927 (14)	C2-N3	1.339 (2)
Cd1-S1	2.5264 (4)	C2-S2	1.7446 (18)
Cd1-S1 ${ }^{\text {iii }}$	2.5264 (4)	N1-N2	1.383 (2)
$\mathrm{C} 1-\mathrm{N} 1$	1.302 (2)	$\mathrm{N} 1-\mathrm{Cd} 1{ }^{\text {ii }}$	2.2927 (14)
C1-S1	1.7304 (17)	N3-H3A	0.8600
C1-S2	1.7390 (16)	N3-H3B	0.8600
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{ii}}$	103.50 (7)	N3-C2-S2	122.69 (13)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{S} 1$	110.90 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	115.35 (13)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{S} 1$	94.38 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1{ }^{\text {ii }}$	112.01 (11)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{S} 1^{\text {iii }}$	94.38 (4)	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cd1}{ }^{\text {ii }}$	132.61 (10)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{S} 1{ }^{\text {iii }}$	110.90 (4)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$	111.06 (15)
S1-Cd1-S1 ${ }^{\text {iii }}$	139.05 (2)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	120.0
N1-C1-S1	122.83 (12)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	120.0
N1-C1-S2	111.98 (12)	H3A-N3-H3B	120.0
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	125.13 (9)	C1-S1-Cd1	100.73 (6)
N2-C2-N3	123.33 (17)	C1-S2-C2	87.62 (8)
N2-C2-S2	113.98 (13)		
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	177.84 (12)	S2- $\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cd} 1$	-90.15 (11)
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	0.51 (19)	$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{S} 1-\mathrm{C} 1$	128.77 (6)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1^{\text {ii }}$	-0.59 (17)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{S} 1-\mathrm{C} 1$	-124.98 (6)
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1^{\text {ii }}$	-177.93 (7)	S1 ${ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{S} 1-\mathrm{C} 1$	4.38 (5)
N3-C2-N2-N1	-179.98 (16)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 2$	0.11 (13)
$\mathrm{S} 2-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$	1.14 (19)	S1-C1-S2-C2	-177.15 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	-1.1 (2)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2-\mathrm{C} 1$	-0.74 (14)
Cd1 ${ }^{\text {ii }}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	176.95 (12)	N3-C2-S2-C1	-179.63 (16)
N1-C1-S1-Cd1	92.87 (14)		

Symmetry codes: (i) $x,-y+1, z+1 / 2$; (ii) $-x+1,-y+1,-z$; (iii) $-x+1, y,-z+1 / 2$.

sup-4

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{~N} 2^{\mathrm{iv}}$	0.86	2.25	$3.064(2)$	158
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 2^{\mathrm{V}}$	0.86	2.66	$3.119(2)$	114
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~S}^{\mathrm{vi}}$	0.86	2.74	$3.4694(17)$	144

Symmetry codes: (iv) $-x+1,-y,-z$; (v) $x,-y, z+1 / 2$; (vi) $-x+3 / 2, y-1 / 2,-z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

